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1 Bernstein’s Inequality, the Johnson-Lindenstass Lemma,
and More Concentration Inequalities

1.1 Bernstein condition for sub-exponentiality

A bounded random variable is sub-Gaussian and hence is sub-expoenntial, but we can get
a tighter quantitative sub-exponential bound.

Proposition 1.1. Suppose X has a mean p and variance o2. Suppose that E[(X — pu)k] <
$klob"=2 for all k > 2. Then X is (v/20,2b)-sub-exponential.

Note that the units in this inequality condition make sense. This condition is called
the Bernstein condition.

Proof. We just need to show that the moment generating function is bounded: Do a Taylor
expansion:

W0 | SN B = )

AX—p)1
Ele Wl =1+ 5 o

k=3
Na? 202 k2
<1+ 5 + 2;3(’)‘|b)
This is a geometric series, so we can simplify it.
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Now let X be a random variable with Var(X) = 02 and 0 < X < b. Then
EIIX — pl*] < E[|X — 2 - 02
— g2pk2
k!
so X is (v/20,2b)-sub-exponential. Last time, we had that X is b-sub-Gaussian. So the
sub-exponential tail bound here is stronger in the region where the sub-exponential and
sub-Gaussian tail behaviors are similar.

1.2 Bernstein’s inequality

Lemma 1.1 (Bernstein’s inequality). Let {X;}ic[, be independent with E[X;] = p; and
Xi (vi, oi)-sub-exponential. Then y ;" | (X; — i) is sub exponential with parameters v, =

\/ Do v? and o, = max; ;. Moreover,
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Let (Xi)ie[n) X be (v, b)-sub-sexponential. Then
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(a) How do we extract the order of 2 37)i = 1"X; — u? Set § = exp(—n min{%, %1,
and solve for ¢ to get

n n

L max{y 2log(1/5)’b2log(l/5) } .

This tells us that
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{V 2log(1/9)) , bQIOg(l/é) } with probability at least 1 — 4.

For small ¢, the first term is the dominant term while the second is a burn-in term.



b) How many samples do we need to have £ 37 - X, — < t with probability 1 — 67
n =1

Set 0 = exp(—n min{%, 5 }) and solve for n to get

21/ 2b
n = max {:2 log(1/4), " log(l/d)} .
When ¢ is small, the first term is dominant, while the second is of smaller order.

Example 1.1. Let X; be iid with support in [0,b] and Var(X;) < v?. We know that
X; is b-sub-Gaussian and (v, b)-sub-exponential. In order for |1 3" | X; — pu| < e with
probability 1 — 4,
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When ¢ <, glog(%) < log(%). So the sub-exponential bound is a stronger bound.
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1.3 An application: the Johnson-Lindenstrass Lemma

Let Y = Y% | Z; with Z; ~ N(0,1). Then Y ~ x?(n). Last time, we showed that Z? is
sE(2,4), so Y ~ sE(2y/n,4). By Bernstein’s inequality,
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Here is a problem: Suppose we have {uj,us,...,un} C R? with a high dimension d.
Can we find a F' : R — R™ with some small m such that the distances are preserved?
That is, we want
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How small can we make m? The Johnson-Lindenstrass says that we can achieve this by
random projection.




Lemma 1.2 (Johnson-Lindenstrass). Let X € R™*? have entries X; S N(0,1), and let

F :RY — R™ be defined as R(u) = \/—%X -u. Then for any fized {u,...,uny} C R?, as

long as m 2, 8% log(%), then with probability 1 — &, we have

£ (ui) — F(uy)

1—e<
llus — w13

2
I2 <1l-—e¢, Vi, j € [N].

Remark 1.1. The dimension that we can reduce to is of order log N, where N is the
number of points. So no matter the dimension d, we can always reduce the dimension to
order log N.

PT’OOf. Denote Y;,j — HF(ul)—F(ug)Hg

inequality will give

. We claim that Y;; ~ x*(m)/m. Then Bernstein’s
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Using a union bound on all N(N — 1) < N? pairs i # j, we get

P (3i,j € [N] s.t.|Vi; — 1] > t) <2N2e /5w <1,

Setting the right hand side equal to &, we can solve for m to get
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Now let’s verify the claim that Y; ; = ~ x%(m)/m. Note that
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which implies that
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This proves the claim. O

Remark 1.2. If we use Markov’s inequality instead of Bernstein’s inequality, we get a
worse bound.

1.4 Equivalent characterizations of sub-exponentiality

Theorem 1.1 (2.13 in HDS, 2.7.1 in HDP'). The following statements are equivalent:

(a)
P(X| > t) < 2exp(—t/m1), Yt >0,

'These two theorems actually say something slightly different.




(b)
1X|[r = (B[ XPPDVP < rop,  Vp=>1.

(c)
Elexp(A[X])] < exp(s)) YA s.t 0< A< —.
K3

(d)
Elexp(|X|/r4)] < 2.

Moreover, if E[X] =0, (a)-(d) are equivalent to
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Here, k1,..., k5 are universal constants.
We will not give the proof here, but you can check either textbook. Here is an example:

Example 1.2. Let X; ~ sG(o1) and X3 ~ sG(o2) be not necessarily independent with
E[X1] = E[X3] = 0. We claim that X; Xy ~ sE(Koj09, Koj03) for some universal K. For
this, we can use property (b) above: First rescale X; and Xy for simplicity. Using the
Cauchy-Schwarz inequality,
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By the rescaling, X;/o; ~ sG(1) for ¢ = 1,2. The sub-Gaussian condition says that

IGlr2r < K(2p))P for all p.
< KP(\/2p)” - KP(/2p)"
— K2P(2p)p.

This tells us that H%%HLP < K?2p for all p.

1.5 Bennett’s inequality

Here is a stronger bound for bounded random variables. Here, we don’t require bounded-
ness from below.



Lemma 1.3 (Bennett’s inequality). Let (X;)ic) be independent, where X; — E[X;] < b
a.s., and v} := Var(X;) for alli € [n]. Then
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where h(u) = (1 + u)log(1 4+ u) — w.

Remark 1.3. This has a stronger assumption than Bernstein’s inequality and provides
a stronger bound than Bernstein’s inequality for bounded random variables. However, it
doesn’t often improve much over Bernstein’s inequality.

1.6 Maximal inequality

Lemma 1.4. Let (Xz-)ie[n] be a sequence of random wvariables. For any convex, strictly
increasing 1 : R — R>q, we have

E [max Xi] <yt (i E[w(Xi)]> :
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Proof.
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Using Jensen’s inequality,
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Upper bounding the maximum by the sum,
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Example 1.3. For X; ~ sG(0), take ¢ (u) = e**. Optimizing over \, we get

E [maXXi] < ov/2log(n).

1€[n]

This gives an important intuition:: n sub-Gausian random variables have maximum of

order y/log(n).



1.7 Truncation argument

Here is a very useful technique in research for getting concentration inequalities for random
variables which are not sub-Gaussian nor sub-exponential.

Example 1.4. Let X; = GY, where (Gy)iepn Y N(0,1). Then E[X;] = E[G}] = 3, but
E[e*Xi] doesn’t exist. However, we still want to upper bound 1 3% | X; — 3.

Here is the technique:

Step 1: Find b, such that

N >,

P (maxXi > bn> <

1€[n]

and &, such that
E[XiLix;>p,}] < en.

Step 2: Apply Hoeffding/Bernstein and get
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Step 3: Combining Steps 1 and 2 implies that

1 n
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As an exercise, figure out b, t,, e, as a function of n and §. The requirement is that
!
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