Statistics 210B Lecture 4 Notes

Daniel Raban

January 27, 2022

1 Bernstein's Inequality, the Johnson-Lindenstass Lemma, and More Concentration Inequalities

1.1 Bernstein condition for sub-exponentiality

A bounded random variable is sub-Gaussian and hence is sub-expoenntial, but we can get a tighter quantitative sub-exponential bound.

Proposition 1.1. Suppose X has a mean μ and variance σ^{2}. Suppose that $\mathbb{E}\left[(X-\mu)^{k}\right] \leq$ $\frac{1}{2} k!\sigma^{2} b^{k-2}$ for all $k \geq 2$. Then X is $(\sqrt{2} \sigma, 2 b)$-sub-exponential.

Note that the units in this inequality condition make sense. This condition is called the Bernstein condition.

Proof. We just need to show that the moment generating function is bounded: Do a Taylor expansion:

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda(X-\mu)}\right] & =1+\frac{\lambda^{2} \sigma^{2}}{2}+\sum_{k=3}^{\infty} \lambda^{k} \frac{\mathbb{E}\left[(X-\mu)^{k}\right]}{k!} \\
& \leq 1+\frac{\lambda^{2} \sigma^{2}}{2}+\frac{\lambda^{2} \sigma^{2}}{2} \sum_{k=3}(|\lambda| b)^{k-2}
\end{aligned}
$$

This is a geometric series, so we can simplify it.

$$
\begin{aligned}
& \leq 1+\frac{\lambda \sigma^{2} / 2}{1-b|\lambda|} \\
& \leq e^{\left(\lambda^{2} \sigma^{2} / 2\right) /(1-b|\lambda|)}
\end{aligned}
$$

When $|\lambda| \leq \frac{1}{2 b}$,

$$
\leq e^{\lambda^{2}(\sqrt{2} \sigma)^{2} / 2}
$$

Now let X be a random variable with $\operatorname{Var}(X)=\sigma^{2}$ and $0 \leq X \leq b$. Then

$$
\begin{aligned}
\mathbb{E}\left[|X-\mu|^{k}\right] & \leq \mathbb{E}\left[|X-\mu|^{2} \cdot b^{k-2}\right] \\
& =\sigma^{2} b^{k-2} \\
& \leq \frac{k!}{2} \sigma^{2} b^{k-2}
\end{aligned}
$$

so X is $(\sqrt{2} \sigma, 2 b)$-sub-exponential. Last time, we had that X is b-sub-Gaussian. So the sub-exponential tail bound here is stronger in the region where the sub-exponential and sub-Gaussian tail behaviors are similar.

1.2 Bernstein's inequality

Lemma 1.1 (Bernstein's inequality). Let $\left\{X_{i}\right\}_{i \in[n]}$ be independent with $\mathbb{E}\left[X_{i}\right]=\mu_{i}$ and $X_{i}\left(\nu_{i}, \alpha_{i}\right)$-sub-exponential. Then $\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)$ is sub exponential with parameters $\nu_{*}=$ $\sqrt{\sum_{i=1}^{n} \nu_{i}^{2}}$ and $\alpha_{*}=\max _{i} \alpha_{i}$. Moreover,

$$
\left.\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \geq t\right)\right) \leq \begin{cases}e^{-n t^{2} /\left(2 \nu_{*}^{2}\right)} & t \leq \nu_{*}^{2} / \alpha_{*} \\ e^{-n t /\left(2 \alpha_{*}\right)} & t>\nu_{*}^{2} / \alpha_{*}\end{cases}
$$

Proof.

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)}\right] & =\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda\left(X_{i}-\mu_{i}\right)}\right] \\
& \leq e^{\lambda^{2} \sum_{i=1}^{n} \nu_{i}^{2} / 2} .
\end{aligned}
$$

for all $\lambda \leq 1 / \max _{i \in[n]} \alpha_{i}$.
Let $\left(X_{i}\right)_{i \in[n]} \stackrel{\text { iid }}{\sim} X$ be (ν, b)-sub-sexponential. Then

$$
\left.\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \geq t\right)\right) \leq e^{-n \min \left\{\frac{t^{2}}{\left.2 \nu^{2}, \frac{t}{2 b}\right\}}\right.}
$$

(a) How do we extract the order of $\left.\frac{1}{n} \sum\right) i=1^{n} X_{i}-\mu$? Set $\delta=\exp \left(-n \min \left\{\frac{t^{2}}{2 \nu^{2}}, \frac{t}{2 b}\right\}\right)$, and solve for t to get

$$
t=\max \left\{\nu \sqrt{\frac{2 \log (1 / \delta)}{n}}, b \frac{2 \log (1 / \delta)}{n}\right\} .
$$

This tells us that
$\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu \leq \max \left\{\nu \sqrt{\frac{2 \log (1 / \delta))}{n}}, b \frac{2 \log (1 / \delta)}{m}\right\} \quad$ with probability at least $1-\delta$.
For small δ, the first term is the dominant term while the second is a burn-in term.
(b) How many samples do we need to have $\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu \leq t$ with probability $1-\delta$? Set $\delta=\exp \left(-n \min \left\{\frac{t^{2}}{2 \nu^{2}}, \frac{t}{2 b}\right\}\right)$ and solve for n to get

$$
n=\max \left\{\frac{2 \nu^{2}}{t^{2}} \log (1 / \delta), \frac{2 b}{t} \log (1 / \delta)\right\} .
$$

When t is small, the first term is dominant, while the second is of smaller order.
Example 1.1. Let X_{i} be iid with support in $[0, b]$ and $\operatorname{Var}\left(X_{i}\right) \leq \nu^{2}$. We know that X_{i} is b-sub-Gaussian and (ν, b)-sub-exponential. In order for $\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \leq \varepsilon$ with probability $1-\delta$,

$$
\begin{gathered}
\mathrm{sG}(1) \Longrightarrow n \geq \frac{b^{2}}{\varepsilon^{2}} \log \left(\frac{1}{\delta}\right), \\
\mathrm{sE}(\nu, 1) \Longrightarrow n \geq \max \left\{\frac{\nu^{2}}{\varepsilon^{2}} \log \left(\frac{1}{\delta}\right), \frac{b}{\varepsilon} \log \left(\frac{1}{\delta}\right)\right\} .
\end{gathered}
$$

When $\varepsilon \leq b, \frac{b}{\varepsilon} \log \left(\frac{1}{\delta}\right) \leq \frac{b^{2}}{\varepsilon^{2}} \log \left(\frac{1}{\delta}\right)$. So the sub-exponential bound is a stronger bound.

1.3 An application: the Johnson-Lindenstrass Lemma

Let $Y=\sum_{i=1}^{n} Z_{i}$ with $Z_{i} \sim N(0,1)$. Then $Y \sim \chi^{2}(n)$. Last time, we showed that Z_{i}^{2} is $\mathrm{sE}(2,4)$, so $Y \sim \mathrm{sE}(2 \sqrt{n}, 4)$. By Bernstein's inequality,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}-1\right| \geq t\right) \leq 2 e^{-n t^{2} / 8} \quad \forall t \leq 1
$$

Here is a problem: Suppose we have $\left\{u_{1}, u_{2}, \ldots, u_{N}\right\} \subseteq \mathbb{R}^{d}$ with a high dimension d. Can we find a $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with some small m such that the distances are preserved? That is, we want

$$
1-\delta \leq \frac{\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\|_{2}^{2}}{\left\|u_{i}-u_{j}\right\|_{2}^{2}} \leq 1+\delta, \quad \forall i, j \in[N] .
$$

How small can we make m ? The Johnson-Lindenstrass says that we can achieve this by random projection.

Lemma 1.2 (Johnson-Lindenstrass). Let $X \in \mathbb{R}^{m \times d}$ have entries $X_{i, j} \stackrel{\mathrm{iid}}{\sim} N(0,1)$, and let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be defined as $R(u)=\frac{1}{\sqrt{m}} X \cdot u$. Then for any fixed $\left\{u_{1}, \ldots, u_{N}\right\} \subseteq \mathbb{R}^{d}$, as long as $m \gtrsim \frac{1}{\varepsilon^{2}} \log \left(\frac{N}{\delta}\right)$, then with probability $1-\delta$, we have

$$
1-\varepsilon \leq \frac{\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\|_{2}^{2}}{\left\|u_{i}-u_{j}\right\|_{2}^{2}} \leq 1-\varepsilon, \quad \forall i, j \in[N] .
$$

Remark 1.1. The dimension that we can reduce to is of order $\log N$, where N is the number of points. So no matter the dimension d, we can always reduce the dimension to order $\log N$.
Proof. Denote $Y_{i, j}=\frac{\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\|_{2}^{2}}{\left\|u_{i}-u_{j}\right\|_{2}^{2}}$. We claim that $Y_{i, j} \sim \chi^{2}(m) / m$. Then Bernstein's inequality will give

$$
\mathbb{P}\left(\left|Y_{i, j}-1\right| \geq t\right) \leq 2 e^{-m t^{2} / \delta} \quad \forall t \leq 1
$$

Using a union bound on all $N(N-1) \leq N^{2}$ pairs $i \neq j$, we get

$$
\mathbb{P}\left(\exists i, j \in[N] \text { s.t. }\left|Y_{i, j}-1\right| \geq t\right) \leq 2 N^{2} e^{-m t^{2} / 8} \quad \forall t \leq 1 .
$$

Setting the right hand side equal to δ, we can solve for m to get

$$
m \geq \frac{8}{t^{2}} \log \left(\frac{2 N^{2}}{\delta}\right)=\frac{C}{t^{2}} \log \left(\frac{N}{\delta}\right)
$$

Now let's verify the claim that $Y_{i, j}=\frac{\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\|_{2}^{2}}{\left\|u_{i}-u_{j}\right\|_{2}^{2}} \sim \chi^{2}(m) / m$. Note that

$$
\frac{1}{\sqrt{m}} X\left(u_{i}-u_{j}\right) \sim N\left(0, \frac{\left\|u_{i}-u_{j}\right\|_{2}^{2}}{m} I_{m}\right),
$$

which implies that

$$
\frac{\left\|X\left(u_{i}-u_{j}\right)\right\|_{2}^{2}}{m} \sim\left\|u_{i}-u_{j}\right\|_{2}^{2} \chi^{2}(m) / m
$$

This proves the claim.
Remark 1.2. If we use Markov's inequality instead of Bernstein's inequality, we get a worse bound.

1.4 Equivalent characterizations of sub-exponentiality

Theorem 1.1 (2.13 in HDS, 2.7.1 in HDP^{1}). The following statements are equivalent:
(a)

$$
\mathbb{P}(|X| \geq t) \leq 2 \exp \left(-t / \kappa_{1}\right), \quad \forall t \geq 0 .
$$

[^0](b)
$$
\|X\|_{L^{p}}=\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p} \leq \kappa_{2} p, \quad \forall p \geq 1 .
$$
(c)
$$
\mathbb{E}[\exp (\lambda|X|)] \leq \exp \left(\kappa_{3} \lambda\right) \quad \forall \lambda \text { s.t. } 0 \leq \lambda \leq \frac{1}{\kappa_{3}}
$$
(d)
$$
\mathbb{E}\left[\exp \left(|X| / \kappa_{4}\right)\right] \leq 2
$$

Moreover, if $\mathbb{E}[X]=0$, (a)-(d) are equivalent to
5.

$$
\mathbb{E}[\exp (\lambda X)] \leq \exp \left(\lambda^{2} \kappa_{5}^{2} / 2\right) \quad \forall|\lambda| \leq \frac{1}{\kappa_{5}} .
$$

Here, $\kappa_{1}, \ldots, \kappa_{5}$ are universal constants.
We will not give the proof here, but you can check either textbook. Here is an example:
Example 1.2. Let $X_{1} \sim \mathrm{sG}\left(\sigma_{1}\right)$ and $X_{2} \sim \mathrm{sG}\left(\sigma_{2}\right)$ be not necessarily independent with $\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{2}\right]=0$. We claim that $X_{1} X_{2} \sim \operatorname{sE}\left(K \sigma_{1} \sigma_{2}, K \sigma_{1} \sigma_{2}\right)$ for some universal K. For this, we can use property (b) above: First rescale X_{1} and X_{2} for simplicity. Using the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\mathbb{E}\left[\left(\left|\frac{X_{1}}{\sigma_{1}}\right|\left|\frac{X_{2}}{\sigma_{2}}\right|\right)^{p}\right] & \leq \mathbb{E}\left[\left|\frac{X_{1}}{\sigma_{1}}\right|^{2 p}\right]^{1 / 2} \mathbb{E}\left[\left|\frac{X_{2}}{\sigma_{2}}\right|^{2 p}\right]^{1 / 2} \\
& =\left\|\frac{X_{1}}{\sigma_{1}}\right\|_{L^{2 p}}^{p}\left\|\frac{X_{2}}{\sigma_{2}}\right\|_{L^{2 p}}^{p}
\end{aligned}
$$

By the rescaling, $X_{i} / \sigma_{i} \sim \mathrm{sG}(1)$ for $i=1,2$. The sub-Gaussian condition says that $\left.\|G\|_{L^{2 p}} \leq K(2 p)\right)^{p}$ for all p.

$$
\begin{aligned}
& \leq K^{p}(\sqrt{2 p})^{p} \cdot K^{p}(\sqrt{2 p})^{p} \\
& =K^{2 p}(2 p)^{p} .
\end{aligned}
$$

This tells us that $\left\|\frac{X_{1}}{\sigma_{1}} \frac{X_{2}}{\sigma_{2}}\right\|_{L^{p}} \leq K^{2} 2 p$ for all p.

1.5 Bennett's inequality

Here is a stronger bound for bounded random variables. Here, we don't require boundedness from below.

Lemma 1.3 (Bennett's inequality). Let $\left(X_{i}\right)_{i \in[n]}$ be independent, where $X_{i}-\mathbb{E}\left[X_{i}\right] \leq b$ a.s., and $\nu_{i}^{2}:=\operatorname{Var}\left(X_{i}\right)$ for all $i \in[n]$. Then

$$
\mathbb{P}\left(\sum_{i=1}^{n}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right) \geq t\right) \leq \exp \left(-\frac{\sum_{i=1}^{n} \nu_{i}^{2}}{b^{2}} h\left(\frac{b t}{\sum_{i=1}^{n} \nu_{i}^{2}}\right)\right),
$$

where $h(u)=(1+u) \log (1+u)-u$.
Remark 1.3. This has a stronger assumption than Bernstein's inequality and provides a stronger bound than Bernstein's inequality for bounded random variables. However, it doesn't often improve much over Bernstein's inequality.

1.6 Maximal inequality

Lemma 1.4. Let $\left(X_{i}\right)_{i \in[n]}$ be a sequence of random variables. For any convex, strictly increasing $\psi: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\max _{i \in[n]} X_{i}\right] \leq \psi^{-1}\left(\sum_{i=1}^{n} \mathbb{E}\left[\psi\left(X_{i}\right)\right]\right), \\
& \mathbb{P}\left(\max _{i \in[n]} X_{i} \geq t\right) \leq \sum_{i=1}^{n} \frac{\mathbb{E}\left[\psi\left(X_{i}\right)\right.}{\psi(t)} .
\end{aligned}
$$

Proof.

$$
\mathbb{E}\left[\max _{i \in[n]} X_{i}\right]=\mathbb{E}\left[\psi^{-1}\left(\max _{i \in[n]} \psi\left(X_{i}\right)\right)\right]
$$

Using Jensen's inequality,

$$
\leq \psi^{-1}\left(\mathbb{E}\left[\max _{i \in[n]} \psi\left(X_{i}\right)\right]\right)
$$

Upper bounding the maximum by the sum,

$$
=\psi^{-1}\left(\sum_{i=1}^{n} \mathbb{E}\left[\psi\left(X_{i}\right)\right]\right)
$$

Example 1.3. For $X_{i} \sim \operatorname{sG}(\sigma)$, take $\psi(u)=e^{\lambda u}$. Optimizing over λ, we get

$$
\mathbb{E}\left[\max _{i \in[n]} X_{i}\right] \leq \sigma \sqrt{2 \log (n)} .
$$

This gives an important intuition:: n sub-Gausian random variables have maximum of order $\sqrt{\log (n)}$.

1.7 Truncation argument

Here is a very useful technique in research for getting concentration inequalities for random variables which are not sub-Gaussian nor sub-exponential.

Example 1.4. Let $X_{i}=G_{i}^{4}$, where $\left(G_{i}\right)_{i \in[n]} \stackrel{\mathrm{iid}}{\sim} N(0,1)$. Then $\mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[G_{i}^{4}\right]=3$, but $\mathbb{E}\left[e^{\lambda X_{i}}\right]$ doesn't exist. However, we still want to upper bound $\frac{1}{n} \sum_{i=1}^{n} X_{i}-3$.

Here is the technique:
Step 1: Find b_{n} such that

$$
\mathbb{P}\left(\max _{i \in[n]} X_{i} \geq b_{n}\right) \leq \frac{\delta}{2}
$$

and ε_{n} such that

$$
\mathbb{E}\left[X_{i} \mathbb{1}_{\left\{X_{i} \geq b_{n}\right\}}\right] \leq \varepsilon_{n} .
$$

Step 2: Apply Hoeffding/Bernstein and get

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i} \mathbb{1}_{\left\{X_{i} \leq b_{n}\right\}}-\mathbb{E}\left[X_{i} \mathbb{1}_{\left\{X_{i} \leq b_{n}\right\}}\right]\right) \leq t_{n}\right) \geq 1-\frac{\delta}{2}
$$

Step 3: Combining Steps 1 and 2 implies that

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mathbb{E}\left[X_{i}\right] \leq t_{n}+\varepsilon_{n}\right) \geq 1-\delta .\right.
$$

As an exercise, figure out $b_{n}, t_{n}, \varepsilon_{n}$ as a function of n and δ. The requirement is that $t_{n}+\varepsilon \sim \widetilde{O}\left(\frac{1}{\sqrt{n}}\right)$.

[^0]: ${ }^{1}$ These two theorems actually say something slightly different.

