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1 Bernstein’s Inequality, the Johnson-Lindenstass Lemma,
and More Concentration Inequalities

1.1 Bernstein condition for sub-exponentiality

A bounded random variable is sub-Gaussian and hence is sub-expoenntial, but we can get
a tighter quantitative sub-exponential bound.

Proposition 1.1. Suppose X has a mean µ and variance σ2. Suppose that E[(X −µ)k] ≤
1
2k!σ2bk−2 for all k ≥ 2. Then X is (

√
2σ, 2b)-sub-exponential.

Note that the units in this inequality condition make sense. This condition is called
the Bernstein condition.

Proof. We just need to show that the moment generating function is bounded: Do a Taylor
expansion:

E[eλ(X−µ)] = 1 +
λ2σ2

2
+

∞∑
k=3

λk
E[(X − µ)k]

k!

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∑
k=3

(|λ|b)k−2

This is a geometric series, so we can simplify it.

≤ 1 +
λσ2/2

1− b|λ|
≤ e(λ2σ2/2)/(1−b|λ|)

When |λ| ≤ 1
2b ,

≤ eλ2(
√
2σ)2/2.
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Now let X be a random variable with Var(X) = σ2 and 0 ≤ X ≤ b. Then

E[|X − µ|k] ≤ E[|X − µ|2 · bk−2]
= σ2bk−2

≤ k!

2
σ2bk−2,

so X is (
√

2σ, 2b)-sub-exponential. Last time, we had that X is b-sub-Gaussian. So the
sub-exponential tail bound here is stronger in the region where the sub-exponential and
sub-Gaussian tail behaviors are similar.

1.2 Bernstein’s inequality

Lemma 1.1 (Bernstein’s inequality). Let {Xi}i∈[n] be independent with E[Xi] = µi and
Xi (νi, αi)-sub-exponential. Then

∑n
i=1(Xi − µi) is sub exponential with parameters ν∗ =√∑n

i=1 ν
2
i and α∗ = maxi αi. Moreover,

P

(
1

n

n∑
i=1

(Xi − µi) ≥ t)

)
≤

{
e−nt

2/(2ν2∗) t ≤ ν2∗/α∗
e−nt/(2α∗) t > ν2∗/α∗

Proof.

E[eλ
∑n
i=1(Xi−µi)] =

n∏
i=1

E[eλ(Xi−µi)]

≤ eλ2
∑n
i=1 ν

2
i /2.

for all λ ≤ 1/maxi∈[n] αi.

Let (Xi)i∈[n]
iid∼ X be (ν, b)-sub-sexponential. Then

P

(
1

n

n∑
i=1

(Xi − µi) ≥ t)

)
≤ e
−nmin{ t2

2ν2, t
2b
} .

(a) How do we extract the order of 1
n

∑
)i = 1nXi − µ? Set δ = exp(−nmin{ t2

2ν2
, t2b}),

and solve for t to get

t = max

{
ν

√
2 log(1/δ)

n
, b

2 log(1/δ)

n

}
.

This tells us that

1

n

n∑
i=1

Xi−µ ≤ max

{
ν

√
2 log(1/δ))

n
, b

2 log(1/δ)

m

}
with probability at least 1− δ.

For small δ, the first term is the dominant term while the second is a burn-in term.
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(b) How many samples do we need to have 1
n

∑n
i=1Xi − µ ≤ t with probability 1 − δ?

Set δ = exp(−nmin{ t2
2ν2

, t2b}) and solve for n to get

n = max

{
2ν2

t2
log(1/δ),

2b

t
log(1/δ)

}
.

When t is small, the first term is dominant, while the second is of smaller order.

Example 1.1. Let Xi be iid with support in [0, b] and Var(Xi) ≤ ν2. We know that
Xi is b-sub-Gaussian and (ν, b)-sub-exponential. In order for | 1n

∑n
i=1Xi − µ| ≤ ε with

probability 1− δ,

sG(1) =⇒ n ≥ b2

ε2
log

(
1

δ

)
,

sE(ν, 1) =⇒ n ≥ max

{
ν2

ε2
log

(
1

δ

)
,
b

ε
log

(
1

δ

)}
.

When ε ≤ b, b
ε log(1δ ) ≤ b2

ε2
log(1δ ). So the sub-exponential bound is a stronger bound.

1.3 An application: the Johnson-Lindenstrass Lemma

Let Y =
∑n

i=1 Zi with Zi ∼ N(0, 1). Then Y ∼ χ2(n). Last time, we showed that Z2
i is

sE(2, 4), so Y ∼ sE(2
√
n, 4). By Bernstein’s inequality,

P

(∣∣∣∣∣ 1n
n∑
i=1

Z2
i − 1

∣∣∣∣∣ ≥ t
)
≤ 2e−nt

2/8 ∀t ≤ 1.

Here is a problem: Suppose we have {u1, u2, . . . , uN} ⊆ Rd with a high dimension d.
Can we find a F : Rd → Rm with some small m such that the distances are preserved?
That is, we want

1− δ ≤ ‖F (ui)− F (uj)‖22
‖ui − uj‖22

≤ 1 + δ, ∀i, j ∈ [N ].

How small can we make m? The Johnson-Lindenstrass says that we can achieve this by
random projection.
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Lemma 1.2 (Johnson-Lindenstrass). Let X ∈ Rm×d have entries Xi,j
iid∼ N(0, 1), and let

F : Rd → Rm be defined as R(u) = 1√
m
X · u. Then for any fixed {u1, . . . , uN} ⊆ Rd, as

long as m & 1
ε2

log(Nδ ), then with probability 1− δ, we have

1− ε ≤ ‖F (ui)− F (uj)‖22
‖ui − uj‖22

≤ 1− ε, ∀i, j ∈ [N ].

Remark 1.1. The dimension that we can reduce to is of order logN , where N is the
number of points. So no matter the dimension d, we can always reduce the dimension to
order logN .

Proof. Denote Yi,j =
‖F (ui)−F (uj)‖22
‖ui−uj‖22

. We claim that Yi,j ∼ χ2(m)/m. Then Bernstein’s

inequality will give
P(|Yi,j − 1| ≥ t) ≤ 2e−mt

2/δ ∀t ≤ 1.

Using a union bound on all N(N − 1) ≤ N2 pairs i 6= j, we get

P (∃i, j ∈ [N ] s.t.|Yi,j − 1| ≥ t) ≤ 2N2e−mt
2/8 ∀t ≤ 1.

Setting the right hand side equal to δ, we can solve for m to get

m ≥ 8

t2
log

(
2N2

δ

)
=
C

t2
log

(
N

δ

)
.

Now let’s verify the claim that Yi,j =
‖F (ui)−F (uj)‖22
‖ui−uj‖22

∼ χ2(m)/m. Note that

1√
m
X(ui − uj) ∼ N

(
0,
‖ui − uj‖22

m
Im

)
,

which implies that
‖X(ui − uj)‖22

m
∼ ‖ui − uj‖22χ2(m)/m.

This proves the claim.

Remark 1.2. If we use Markov’s inequality instead of Bernstein’s inequality, we get a
worse bound.

1.4 Equivalent characterizations of sub-exponentiality

Theorem 1.1 (2.13 in HDS, 2.7.1 in HDP1). The following statements are equivalent:

(a)
P(|X| ≥ t) ≤ 2 exp(−t/κ1), ∀t ≥ 0.

1These two theorems actually say something slightly different.
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(b)
‖X‖Lp = (E[|X|p])1/p ≤ κ2p, ∀p ≥ 1.

(c)

E[exp(λ|X|)] ≤ exp(κ3λ) ∀λ s.t. 0 ≤ λ ≤ 1

κ3
.

(d)
E[exp(|X|/κ4)] ≤ 2.

Moreover, if E[X] = 0, (a)-(d) are equivalent to

5.

E[exp(λX)] ≤ exp(λ2κ25/2) ∀|λ| ≤ 1

κ5
.

Here, κ1, . . . , κ5 are universal constants.

We will not give the proof here, but you can check either textbook. Here is an example:

Example 1.2. Let X1 ∼ sG(σ1) and X2 ∼ sG(σ2) be not necessarily independent with
E[X1] = E[X2] = 0. We claim that X1X2 ∼ sE(Kσ1σ2,Kσ1σ2) for some universal K. For
this, we can use property (b) above: First rescale X1 and X2 for simplicity. Using the
Cauchy-Schwarz inequality,

E
[(∣∣∣∣X1

σ1

∣∣∣∣ ∣∣∣∣X2

σ2

∣∣∣∣)p] ≤ E

[∣∣∣∣X1

σ1

∣∣∣∣2p
]1/2

E

[∣∣∣∣X2

σ2

∣∣∣∣2p
]1/2

=

∥∥∥∥X1

σ1

∥∥∥∥p
L2p

∥∥∥∥X2

σ2

∥∥∥∥p
L2p

By the rescaling, Xi/σi ∼ sG(1) for i = 1, 2. The sub-Gaussian condition says that
‖G‖L2p ≤ K(2p))p for all p.

≤ Kp(
√

2p)p ·Kp(
√

2p)p

= K2p(2p)p.

This tells us that ‖X1
σ1

X2
σ2
‖Lp ≤ K22p for all p.

1.5 Bennett’s inequality

Here is a stronger bound for bounded random variables. Here, we don’t require bounded-
ness from below.
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Lemma 1.3 (Bennett’s inequality). Let (Xi)i∈[n] be independent, where Xi − E[Xi] ≤ b
a.s., and ν2i := Var(Xi) for all i ∈ [n]. Then

P

(
n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
−
∑n

i=1 ν
2
i

b2
h

(
bt∑n
i=1 ν

2
i

))
,

where h(u) = (1 + u) log(1 + u)− u.

Remark 1.3. This has a stronger assumption than Bernstein’s inequality and provides
a stronger bound than Bernstein’s inequality for bounded random variables. However, it
doesn’t often improve much over Bernstein’s inequality.

1.6 Maximal inequality

Lemma 1.4. Let (Xi)i∈[n] be a sequence of random variables. For any convex, strictly
increasing ψ : R→ R≥0, we have

E
[
max
i∈[n]

Xi

]
≤ ψ−1

(
n∑
i=1

E[ψ(Xi)]

)
,

P
(

max
i∈[n]

Xi ≥ t
)
≤

n∑
i=1

E[ψ(Xi)

ψ(t)
.

Proof.

E
[
max
i∈[n]

Xi

]
= E

[
ψ−1

(
max
i∈[n]

ψ(Xi)

)]
Using Jensen’s inequality,

≤ ψ−1
(
E
[
max
i∈[n]

ψ(Xi)

])
Upper bounding the maximum by the sum,

= ψ−1

(
n∑
i=1

E[ψ(Xi)]

)
.

Example 1.3. For Xi ∼ sG(σ), take ψ(u) = eλu. Optimizing over λ, we get

E
[
max
i∈[n]

Xi

]
≤ σ

√
2 log(n).

This gives an important intuition:: n sub-Gausian random variables have maximum of
order

√
log(n).

6



1.7 Truncation argument

Here is a very useful technique in research for getting concentration inequalities for random
variables which are not sub-Gaussian nor sub-exponential.

Example 1.4. Let Xi = G4
i , where (Gi)i∈[n]

iid∼ N(0, 1). Then E[Xi] = E[G4
i ] = 3, but

E[eλXi ] doesn’t exist. However, we still want to upper bound 1
n

∑n
i=1Xi − 3.

Here is the technique:

Step 1: Find bn such that

P
(

max
i∈[n]

Xi ≥ bn
)
≤ δ

2

and εn such that
E[Xi1{Xi≥bn}] ≤ εn.

Step 2: Apply Hoeffding/Bernstein and get

P

(
1

n

n∑
i=1

(Xi1{Xi≤bn} − E[Xi1{Xi≤bn}]) ≤ tn

)
≥ 1− δ

2
.

Step 3: Combining Steps 1 and 2 implies that

P

(
1

n

n∑
i=1

(Xi − E[Xi] ≤ tn + εn

)
≥ 1− δ.

As an exercise, figure out bn, tn, εn as a function of n and δ. The requirement is that
tn + ε ∼ Õ( 1√

n
).
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